Experimental and numerical study on the structural behavior of eccentrically loaded GFRP columns
نویسندگان
چکیده
Glass fiber reinforced polymer (GFRP) pultruded profiles are being increasingly used in civil engineering applications. Although they offer several advantages over traditional materials, such as high strength, lightness and non-corrodibility, GFRP profiles present low elasticity and shear moduli, which together with their slender walls makes them very prone to buckling phenomena. Several previous studies addressed the global and local buckling behavior of GFRP pultruded members under concentric loading. However, little attention has been given to the effect of small eccentricities, which may arise from material geometrical imperfections or construction errors. This paper presents results of experimental and numerical investigations about the structural behavior of GFRP pultruded columns subjected to small eccentric loading about the major (strong) axis. To accomplish such goal, three series of 1.50 m long GFRP I-section (120 60 6mm) columns were tested in compression applied with the three following eccentricity/height of the cross-section ratios: e/ h1⁄40.00, 0.15 and 0.30. It was found that such small eccentricities are of major importance for the behavior of GFRP pultruded columns. Although the initial axial stiffness of eccentrically loaded columns was similar to that of concentrically loaded ones, for increasing loads the stiffness considerably decreased due to bowing and second-order P–δ effects. Furthermore, results show that the load capacity of columns subjected to loads applied within the kern boundaries is reduced up to 40% at an approximately linear trend. Results obtained from the experimental campaign were compared with analytical predictions and numerical simulations using (i) the finite element method (FEM) and (ii) the generalized beam theory (GBT). In general, a very good agreement was obtained between experimental data and analytical and numerical results. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Behavior of FRP-Confined Reactive Powder Concrete Columns under Eccentric Loading
Fiber reinforced Polymers (FRP) have widely used for the purposes of enhances strength and ductility of concrete columns. Proper design of such hybrid columns, however, requires a better recognition of the behavior of concrete columns confined with FRP. In this paper, the influence of FRP thickness, concrete compressive strength, and column size on the performance of eccentrically loaded reacti...
متن کاملNumerical investigation of GFRP bars contribution on performance of concrete structural elements
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elas...
متن کاملCyclic and Monotonic Behavior of Strengthened and Unstrengthened Square Reinforced Concrete Columns
The use of composite materials is an effective technique to enhance the capacity of reinforced concrete columns subjected to the seismic loading due to their high tensile strength. In this paper, numerical models are developed in order to predict the experimental behavior of square reinforced concrete columns strengthened by glass fiber reinforced polymer and steel bars and unstrengthened colum...
متن کاملBehaviour of FRP strengthened concrete columns under eccentric compression loading
This paper presents results of testing eccentrically loaded columns externally wrapped with two types of materials. Six cylindrical (205 mm diameter and 925 mm height) plain columns were cast and tested. Half of the columns were wrapped with GFRP and the other half with CFRP. All columns were tested by applying an axial load at 50 mm eccentricity. In each group (GFRP or CFRP wrapped) of columns...
متن کاملExperimental Study of a Square Foundation with Connected and Non-Connected Piled Raft Foundation Under Eccentrically Loaded
In the recent years, non-connected piled raft foundation has been considered as an economical and practical deep foundation in the situation that high shear and concentrated loads may occur at the connection of the raft and pile head. This paper was presented an experimental study of a square foundation on the effects of parameters such as S/D, L/D and etc. in two cases of connected or non-conn...
متن کامل